A boundary regularity theorem for mean curvature flow

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Local Regularity Theorem for Mean Curvature Flow

This paper proves curvature bounds for mean curvature flows and other related flows in regions of spacetime where the Gaussian densities are close to 1.

متن کامل

A General Regularity Theory for Weak Mean Curvature Flow

We give a new proof of Brakke’s partial regularity theorem up to C for weak varifold solutions of mean curvature flow by utilizing parabolic monotonicity formula, parabolic Lipschitz approximation and blow-up technique. The new proof extends to a general flow whose velocity is the sum of the mean curvature and any given background flow field in a dimensionally sharp integrability class. It is a...

متن کامل

Existence and Regularity for the Generalized Mean Curvature Flow Equations

X iv :0 90 8. 30 57 v1 [ m at h. A P] 2 1 A ug 2 00 9 EXISTENCE AND REGULARITY FOR THE GENERALIZED MEAN CURVATURE FLOW EQUATIONS RONGLI HUANG AND JIGUANG BAO Abstract. By making use of the approximation method, we obtain the existence and regularity of the viscosity solutions for the generalized mean curvature flow. The asymptotic behavior of the flow is also considered. In particular, the Diri...

متن کامل

Global boundedness, interior gradient estimates, and boundary regularity for the mean curvature equation with boundary conditions

where ν is the outward pointing unit normal of ∂Ω, and where cosθ is a given function on ∂Ω. (Thus, in the capillarity problem, we are considering geometrically a function u in Ω̄ whose graph has the prescribed mean curvature H and which meets the boundary cylinder in the prescribed angle θ.) Here, H = H(x,t) is assumed to be a given locally Lipschitz function in Ω×R satisfying the structural co...

متن کامل

Phase field method for mean curvature flow with boundary constraints

This paper is concerned with the numerical approximation of mean curvature flow t → Ω(t) satisfying an additional inclusion-exclusion constraint Ω1 ⊂ Ω(t) ⊂ Ω2. Classical phase field model to approximate these evolving interfaces consists in solving the AllenCahn equation with Dirichlet boundary conditions. In this work, we introduce a new phase field model, which can be viewed as an Allen Cahn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 1996

ISSN: 0022-040X

DOI: 10.4310/jdg/1214458976